セミナー
印刷
【オンデマンド配信】
コーティングプロセスにおける界面化学とレオロジー解析
〜濡れ性と粘弾性からコーティングを正しく把握する〜
視聴期間:申込日から10営業日後まで(期間中は何度でも視聴可)
本セミナーでは、界面化学、レオロジーの基礎や高分子のレオロジーと微粒子分散系の安定性について説明した後に、コーティングプロセスを液膜形成過程と乾燥硬化過程に分け、技術的観点から様々な事例について解説する。
日時 | 2025年2月27日(木) まで申込受付中/※ 映像時間 約3時間 |
|
---|---|---|
収録日時 | 2024年9月26日 | |
講師 | 千葉大学 名誉教授 大坪 泰文 氏 【経歴など】 | |
受講料(税込)
各種割引特典
|
49,500円
( E-Mail案内登録価格 46,970円 )
S&T会員登録とE-Mail案内登録特典について
定価:本体45,000円+税4,500円
E-Mail案内登録価格:本体42,700円+税4,270円
|
|
E-Mail案内登録なら、2名同時申込みで1名分無料
1名分無料適用条件
2名で49,500円 (2名ともE-Mail案内登録必須/1名あたり定価半額の24,750円)
1名申込み: 受講料 37,400円(E-Mail案内登録価格 35,640円 ) 定価:本体34,000円+税3,400円 E-Mail案内登録価格:本体32,400円+税3,240円 ※1名様でオンライン配信セミナーを受講する場合、上記特別価格になります。 ※お申込みフォームで【テレワーク応援キャンペーン】を選択のうえお申込みください。 ※他の割引は併用できません。 |
||
配布資料 | PDFテキスト(印刷可):マイページよりダウンロード 講師メールアドレスの掲載:有 | |
オンライン配信 | オンデマンド配信 ►受講方法・視聴環境確認 (申込み前に必ずご確認ください) | |
備考 | ※講義の録音・録画・撮影はご遠慮ください。 ※開催日の概ね1週間前を目安に、最少催行人数に達していない場合、セミナーを中止することがございます。 | |
得られる知識 | 1.界面化学とレオロジーに基づき、コーティングプロセスを素過程に分割して把握するとともに、それらの挙動を材料物性と関連づけて理解するコツが掴めるようになります。 2.コーティング液を設計するための知識を得ることができます。具体的には高分子や分散系のレオロジー、界面活性剤の吸着と表面張力、固液界面におけるぬれ性であり、これらを総合的に結びつけて解釈できるようになります。 3.コーティング液を評価するためのレオロジー及び界面化学的測定法に関するノウハウを習得できるようになります。 | |
対象 | 【講師より】 固体表面に塗料、インキ、接着剤など液体の薄膜を形成するプロセスに携わる技術者が対象になりますが、受講に際して特別の予備知識は必要ありません。高校で習った理科系科目の内容を思い出せれば理解できると考えます。コーティングに関わったことがない技術者でも、レオロジー測定や界面物性測定について習得できるよう説明します。 |
セミナー趣旨
コーティング液の多くは、媒体中にバインダーなどの高分子や顔料などの微粒子が分散した不均一系流体であり、コーティング液の物性制御およびプロセス管理と密接に関係する科学はバルクのレオロジーと濡れ性に関する界面化学です。塗料やインクなどは液体状態で紙、プラスチック、金属などに塗布された後、乾燥や化学反応などを経て固体塗膜となりますが、この過程に密接に関連するのは濡れ性に関する界面化学です。一方、液体中に分散した微粒子は、ほとんどの場合、その界面化学的性質に起因して凝集しており、その効果はレオロジー的性質に大きく反映されます。コーティングにおける薄膜化の動的過程では、コーティング液は流動しているので、そのレオロジー的性質が塗布性に深く関わっています。さらに、高分子はコーティング液の粘弾性的性質に大きな影響を与えるとともに成膜性と皮膜の性能を支配する重要な要素となっています。
本セミナーでは、最初に界面化学とレオロジーの基礎、次にコーティング液の材料科学として高分子のレオロジーと微粒子分散系の安定性について説明します。続いてコーティング技術を総合的に理解するために、コーティングプロセスを液膜形成過程と乾燥硬化過程に分け、技術的観点から様々な事例について解説します。
本セミナーでは、最初に界面化学とレオロジーの基礎、次にコーティング液の材料科学として高分子のレオロジーと微粒子分散系の安定性について説明します。続いてコーティング技術を総合的に理解するために、コーティングプロセスを液膜形成過程と乾燥硬化過程に分け、技術的観点から様々な事例について解説します。
セミナー講演内容
1.界面化学の基礎
1.1 表面張力と表面エネルギー
1.2 固液界面における濡れと接触角
1.3 Zismanプロットと臨界表面張力
1.4 表面の幾何学と超撥水
1.5 溶液の表面張力と界面活性剤の吸着
1.6 臨界ミセル濃度と表面張力
2.レオロジーの基礎
2.1 連続体力学の基礎
a) ひずみ
b) ひずみ速度(せん断速度)
c) 応力
2.2 粘性の基礎
a) 粘度 (粘性率) の定義
b) 非ニュートン流動(擬塑性流動、ダイラタント流動)
c) チクソトロピー
d)技術用語としてのチクソ性
2.3 粘弾性の基礎
a) 弾性と粘性の基本的性質
b) 粘弾性モデルと典型的な粘弾性挙動
c) 動的粘弾性関数の定義とその意味
d) 動的粘弾性曲線に基づく流体と固体の判別
3.コーティング液の材料設計に関わる界面化学とレオロジー
3.1 粒子分散系のコロイド化学的安定性
a) 粒子の帯電とζ-電位
b) イオン雰囲気と電気二重層
c) DLVO理論と粒子の分散安定性
d) 吸着高分子と粒子の分散安定性
e) 凝集分散系のレオロジー的性質
f) 粒子の濡れ性と分散性
3.2 高分子液体のレオロジー
a) 高分子の分子運動
b) 高分子の分子量と粘度挙動との関係
c) 高分子溶液の非ニュートン流動
d) ガラス転移と時間-温度換算則
e) 高分子の分子量と粘弾性挙動との関係
f) 結晶性高分子の粘弾性挙動
4.コーティング液の薄膜形成に関わる界面化学とレオロジー
4.1 レベリングにおける表面張力と粘度
4.2 工業的コーティングプロセスにおける支配因子
a) スピンコートにおける膜厚と粘度
b) ディップコートにおける粘度と表面張力
c) リバースコータにおけるキャピラリー数と不安定流動
d) ドクターブレードにおける不安定流動と法線応力効果
e) 非線形粘弾性と塗工性
f) 分散系の降伏挙動と印刷適性
g)降伏応力をもつ分散系に対する表面張力の影響
4.3 インクジェットにおける動的表面張力と動的粘弾性
5.コーティング液の固化過程に関わる界面化学とレオロジー
5.1 粘性液体から弾性固体への固化過程の概要
5.2 反応硬化過程における三次元網目形成と粘弾性挙動
5.3 ジェットインクの浸透乾燥と界面化学
5.4 グラビアインキにおける濡れ性と接着強度
5.5 エマルション塗料の融着成膜
5.6 トナーにおける冷却固化と動的粘弾性に関するパラメータ特許
□ 質疑応答 □
1.1 表面張力と表面エネルギー
1.2 固液界面における濡れと接触角
1.3 Zismanプロットと臨界表面張力
1.4 表面の幾何学と超撥水
1.5 溶液の表面張力と界面活性剤の吸着
1.6 臨界ミセル濃度と表面張力
2.レオロジーの基礎
2.1 連続体力学の基礎
a) ひずみ
b) ひずみ速度(せん断速度)
c) 応力
2.2 粘性の基礎
a) 粘度 (粘性率) の定義
b) 非ニュートン流動(擬塑性流動、ダイラタント流動)
c) チクソトロピー
d)技術用語としてのチクソ性
2.3 粘弾性の基礎
a) 弾性と粘性の基本的性質
b) 粘弾性モデルと典型的な粘弾性挙動
c) 動的粘弾性関数の定義とその意味
d) 動的粘弾性曲線に基づく流体と固体の判別
3.コーティング液の材料設計に関わる界面化学とレオロジー
3.1 粒子分散系のコロイド化学的安定性
a) 粒子の帯電とζ-電位
b) イオン雰囲気と電気二重層
c) DLVO理論と粒子の分散安定性
d) 吸着高分子と粒子の分散安定性
e) 凝集分散系のレオロジー的性質
f) 粒子の濡れ性と分散性
3.2 高分子液体のレオロジー
a) 高分子の分子運動
b) 高分子の分子量と粘度挙動との関係
c) 高分子溶液の非ニュートン流動
d) ガラス転移と時間-温度換算則
e) 高分子の分子量と粘弾性挙動との関係
f) 結晶性高分子の粘弾性挙動
4.コーティング液の薄膜形成に関わる界面化学とレオロジー
4.1 レベリングにおける表面張力と粘度
4.2 工業的コーティングプロセスにおける支配因子
a) スピンコートにおける膜厚と粘度
b) ディップコートにおける粘度と表面張力
c) リバースコータにおけるキャピラリー数と不安定流動
d) ドクターブレードにおける不安定流動と法線応力効果
e) 非線形粘弾性と塗工性
f) 分散系の降伏挙動と印刷適性
g)降伏応力をもつ分散系に対する表面張力の影響
4.3 インクジェットにおける動的表面張力と動的粘弾性
5.コーティング液の固化過程に関わる界面化学とレオロジー
5.1 粘性液体から弾性固体への固化過程の概要
5.2 反応硬化過程における三次元網目形成と粘弾性挙動
5.3 ジェットインクの浸透乾燥と界面化学
5.4 グラビアインキにおける濡れ性と接着強度
5.5 エマルション塗料の融着成膜
5.6 トナーにおける冷却固化と動的粘弾性に関するパラメータ特許
□ 質疑応答 □